Dowty, E. (1997). ATOMS. Version 4.0. A Computer Program for Displaying Atomic Structures. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA; Shape Software, http://www.tricon.net/comm/shape
Gao, Q., Chen, J., Li, S., Xu, R., Thomas, J. M., Light, M. \& Hursthouse, M. B. (1996). J. Solid State Chem. 127, 145-150.
Jones, R. H., Thomas, J. M., Xu, R., Huo, Q., Xu, Y., Checthman, A. K. \& Bieber, D. (1990). J. Chem. Soc. Chem. Commun. pp. 1170-1172.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24. 351-359.
Oliver, S., Kuperman, A., Lough, A. \& Ozin, G. A. (1996a). Chem. Mater. 8, 2391-2398.
Oliver, S., Kuperman, A., Lough, A. \& Ozin, G. A. (1996b). Inorg. Chem. 35, 6373-6380.
Pluth, J. J., Smith, J. V., Bennett, J. M. \& Cohen, J. P. (1984). Acta Cryst. C40, 2008-2011.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Wang, T., Yu, L. \& Pang, W. (1990). J. Solid State Chem. 89, 392395.

Williams, I. D., Yu, J., Gao, Q., Chen, J. \& Xu, R. (1997). Chem. Commun. pp. 1273-1274.
Wilson, S. T., Lok, B. M., Messina, C. A., Cannon, T. R. \& Flanigen, E. M. (1982). J. Am. Chem. Soc. 104, 1146-1147.

Acta Cryst. (1999). C55, 1617-1620

Bis(cyclohexane-1,3-dionato)- C^{2}, O^{1}-(ethyl-enediamine- N, N^{\prime}) platinum(II) trihydrate and bis(cyclohexane-1,3-dionato)- C^{2}, O^{1} (N, N-dimethylethylenediamine- $\mathrm{N}, \mathrm{N}^{\prime}$)platinum(II)

Hidetaka Yuge and Takeshi Ken Miyamoto

Department of Chemistry, School of Science, Kitasato University, Kitasato, Sagamihara, Kanagawa 228-8555,
Japan.E-mail: yuge@kitasato-u.ac.jp
(Received 5 May 1999; accepted I4 June I999)

Abstract

In each of the title organoplatinum(II) compounds, $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, (1), and $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}-\right.$ $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$], (2), one 1,3-cyclohexanedionate monoanion is bound to the Pt atom at the $\mathrm{Csp}{ }^{3}$ atom and the other is bound at the enolate O atom. The $\mathrm{Pt}-\mathrm{C}$ bond lengths in (1) and (2) are 2.123 (4) and 2.108 (5) \AA, respectively. The shorter $\mathrm{Pt}-\mathrm{C}$ distance in (2) may be due to a trans influence of the NMe_{2} moiety of the N, N-dimethylethylenediamine ligand.

Comment

The reactions of bis(acetylacetonato)platinum(II) compounds with certain bases in organic solvents have been investigated previously. By means of vibrational and NMR spectroscopy, the acetylacetonate anions in the products were found to be an O, O^{\prime}-bonded chelate or a central-C-bonded form (Ito et al., 1976). We have recently reported the structure of $[\mathrm{Pt}($ trans $-1 R, 2 R$ -dach)(acac- $\left.\left.O, O^{\prime}\right)\right]($ acac $)$ (dach is diaminocyclohexane and Hacac is acetylacetone), crystallized from an aqueous solution containing a $1: 2$ ratio of $[\mathrm{Pt}($ trans $-1 R, 2 R$ dach $)(\mathrm{OH})_{2}$] and Hacac (Yuge \& Miyamoto, 1997). By using 1,3-cyclohexanedione (Hchdo) in place of Hacac to be a potential monodentate ligand, the title compounds, (1) and (2), have been synthesized and their crystal structures are reported here.

(1)

(2)

In (1) and (2), two independent chdo ${ }^{-}$anions behave as monodentate ligands in different ways (Figs. 1 and 2); one coordinates to the Pt atom at the 2-C atom and the other is bound at the O atom as an enolate with a Z conformation. The donor C atoms of the former appear to be $s p^{3}$ hydridized because of their nearly tetrahedral environment. In the latter, the enolate O21C21 bond lengths of 1.290 (4) \AA in (1) and 1.290 (6) \AA in (2) are apparently longer than the carbonyl $\mathrm{O} 23=\mathrm{C} 23$ of 1.256 (5) \AA in (1) and 1.243 (7) \AA in (2). The $\mathrm{Pt}-$ $\mathrm{O} 21-\mathrm{C} 21=\mathrm{C} 22$ torsion angles and the dihedral angles between the enolate ligands and the square planes about the Pt atoms are $-10.2(6)$ and $63.3(2)^{\circ}$ in (1), and -6.2 (8) and 88.2 (3) ${ }^{\circ}$ in (2).

The coordination geometry about the Pt atom is similar to that of $\left[\mathrm{Pt} L\left(\right.\right.$ asc $\left.\left.-C^{2}, O^{5}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, (3) and (4) (L is cis- and trans- $1 R, 2 R$-dach, and asc ${ }^{2-}$ is the L-ascorbate dianion; Hollis et al., 1985; Yuge \& Miyamoto, 1996), where the Pt atom is coordinated by a chelating diamine and by the asc^{2-} anion at the O and C atoms. The

Fig. 1. The asymmetric unit of (1), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. One disordered conformer of the enolate chdo- ligand is drawn with an open ellipsoid and bonds. H atoms are shown as spheres of arbitrary radii.

Fig. 2. The molecule of (2), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
bond lengths about the Pt atoms in the four complexes are also comparable. In (1) and (2), the fact that the $\mathrm{Pt}-\mathrm{N} 1$ bond lengths are longer than the $\mathrm{Pt}-\mathrm{N} 2$ bond lengths suggests the influence of the C 12 atoms at the trans positions, as observed in (3) and (4); the $\mathrm{Pt}-\mathrm{Nl}$ and $\mathrm{Pt}-\mathrm{N} 2$ bond lengths are 2.070 (3) and 2.025 (3) \AA in (1), 2.124 (5) and 2.019 (5) \AA in (2), 2.100 (6) and 2.047 (8) \AA in (3), and 2.093 (5) and 2.033 (5) \AA in (4), respectively. The steric repulsion of the methyl groups of the dmen ligand (dmen is N, N-dimethylethylenediamine) in (2) may give rise to the slightly longer $\mathrm{Pt}-$ $\mathrm{N} 1[2.124(5) \AA$] and the shorter $\mathrm{Pt}-\mathrm{C} 12$ [2.108(5) \AA] distances.

In (1), the $\left[\mathrm{Pt}(\mathrm{en})(\text { chdo })_{2}\right]$ molecule is surrounded by three crystallographically independent water molecules
(Fig. 3), which form a two-dimensional hydrogen-bond network with the carbonyl $\mathrm{O} 11, \mathrm{O} 13$ and O 23 atoms of the chdo ${ }^{-}$anions and with the amino N 1 and N 2 atoms of the en ligand (en is ethylenediamine) (Table 2), while a one-dimensional hydrogen-bonding chain is formed with the carbonyl O 23 and amino N 2 atoms along the c axis in (2) (Table 4).

Fig. 3. The packing diagram of (1), showing the hydrogen-bond network with dashed lines. H and disordered C atoms have been omitted for clarity.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (1) in $\mathrm{D}_{2} \mathrm{O}$ are consistent with the molecular structure in the crystalline state. The spectra of (2) in $\mathrm{D}_{2} \mathrm{O}$ are very similar to those of (1), aside from signals due to the methyl groups of the dmen ligand. Any signals of other possible isomers were not found in the spectra of the mother solutions of (1) and (2). Accordingly, no compounds involving two or more $\mathrm{Pt}-\mathrm{C}$ bonds would be formed, and the $\mathrm{Pt}-\mathrm{C}$ bond in (2) would be selectively formed at the trans position of the dimethylamino group.

Experimental

For (1), Hchdo ($0.225 \mathrm{~g}, 2.01 \mathrm{mmol}$) dissolved in water $(10 \mathrm{ml})$ was added to a solution $(100 \mathrm{ml})$ of $\left[\mathrm{Pt}(\mathrm{en})(\mathrm{OH})_{2}\right]$, prepared by passing an aqueous solution of $\left[\mathrm{Pt}(\mathrm{en})\left(\mathrm{ONO}_{2}\right)_{2}\right]$ $(0.381 \mathrm{~g}, 1.00 \mathrm{mmol})$ through a column packed with anionexchange resin. After standing overnight at room temperature, rotary evaporation to ca 5 ml followed by addition of acetone $(20 \mathrm{ml})$ gave a pale-yellow precipitate of (1) $(0.339 \mathrm{~g}, 64 \%$ yield). Analysis found: C $31.39, \mathrm{H} 5.21, \mathrm{~N} 5.23 \%$; calculated for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Pt}: \mathrm{C} 31.64, \mathrm{H} 5.31, \mathrm{~N} 5.27 \%$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}, \delta$ p.p.m.): 4.21, $6.00(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 1.7-2.6$ ($m, 16 \mathrm{H}, \mathrm{CH}_{2}$) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 75.5 \mathrm{MHz}, \delta$ p.p.m.): $217.2(2 \mathrm{C}, \mathrm{C}=\mathrm{O}), 202.8(\mathrm{C}=\mathrm{O}), 196.0(\mathrm{C}-\mathrm{O}), 104.7(\mathrm{CH})$,
$49.5,48.8\left[2 \mathrm{C}, \mathrm{CH}_{2}(\mathrm{en})\right], 46.3(\mathrm{CH}), 36.6\left[2 \mathrm{C}, \mathrm{CH}_{2}\right.$ (chdo ${ }^{-}$)], $34.7,33.9,21.2,18.1$ [$4 \mathrm{C}, \mathrm{CH}_{2}$ (chdo ${ }^{-}$)]. For (2), an aqueous solution (5 ml) containing Hchdo ($0.228 \mathrm{~g}, 2.03 \mathrm{mmol}$) and $\left[\mathrm{Pt}(\right.$ dmen $\left.)\left(\mathrm{ONO}_{2}\right)_{2}\right](0.407 \mathrm{~g}, 1.00 \mathrm{mmol})$ was treated with a 1,4-dioxane/acetonitrile ($1: 1 \mathrm{v} / \mathrm{v}$) mixture (20 ml) to obtain (2) ($0.192 \mathrm{~g}, 38 \%$ yield). Analysis found: C 37.70 , H 5.11, N 5.55%; calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pt}$: C 38.02 , H 5.18, N 5.54%; ${ }^{~}{ }^{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}, \delta$ p.p.m.) $4.21,6.00$ ($2 s, 2 \mathrm{H}, \mathrm{CH}$), 1.7-2.6 (m, 16H, CH C_{2}) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$, $75.5 \mathrm{MHz}, \delta$ p.p.m. $): 217.7(2 \mathrm{C}, \mathrm{C}=\mathrm{O}), 202.8(\mathrm{C}=\mathrm{O}), 194.7$ $(\mathrm{C}-\mathrm{O}), 105.7(\mathrm{CH}), 66.1\left(2 \mathrm{C}, \mathrm{CH}_{3}\right) 50.7,45.0$ [2C, $\left.\mathrm{CH}_{2}(\mathrm{en})\right]$, $46.1(\mathrm{CH}), 36.7\left[2 \mathrm{C}, \mathrm{CH}_{2}\left(\right.\right.$ chdo $\left.^{-}\right)$], $34.7,33.9,21.1,18.3$ [4C, CH_{2} (chdo ${ }^{-}$)]. Both compounds were recrystallized from water. In the solid state, the isolated compounds were fairly stable for months, even in air, and no changes in the NMR spectra of either compound were observed over a period of at least a week, whereas the yellow aqueous solutions turned brown in a few months.

Compound (1)

Crystal data
$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$-$3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=531.47$
Monoclinic
$P 2_{1} / a$
$a=9.152(1) \AA$
$b=20.886(1) \AA$
$c=9.555(1) \AA$
$\beta=97.57(1)^{\circ}$
$V=1810.4(4) \AA^{3}$
$Z=4$
$D_{x}=1.950 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.96 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in $\mathrm{CCl}_{4} / \mathrm{CHBr}_{3}$

Data collection

Rigaku AFC-7R diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
ψ scan (North et al.,
1968)
$T_{\text {min }}=0.171, T_{\text {max }}=0.459$
5587 measured reflections
5285 independent reflections
4283 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.058$
$S=1.037$
5285 reflections
246 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0228 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=16.7-18.6^{\circ}$
$\mu=7.787 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Rhombic plate
$0.32 \times 0.14 \times 0.10 \mathrm{~mm}$
Pale yellow
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=30^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 29$
$l=-13 \rightarrow 13$
3 standard reflections every 150 reflections intensity decay: 0.8%
$\Delta \rho_{\text {max }}=0.88 \mathrm{e} \AA^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-1.07 \mathrm{e} \AA^{-3}$
Extinction correction:
SHELXL97 (Sheldrick, 1997)

Extinction coefficient: 0.0015 (1)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (1)

$\mathrm{Pl}-\mathrm{N} 1$	$2.070(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.470(5)$
$\mathrm{P}-\mathrm{N} 2$	$2.025(3)$	$\mathrm{C} 12-\mathrm{Cl} 3$	$1.474(5)$
$\mathrm{P}-\mathrm{Cl} 2$	$2.123(4)$	$\mathrm{O} 21-\mathrm{C} 21$	$1.290(4)$
$\mathrm{P}-\mathrm{O} 21$	$2.034(3)$	$\mathrm{O} 23-\mathrm{C} 23$	$1.256(5)$
$\mathrm{O} 11-\mathrm{C} 11$	$1.240(4)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.374(5)$
$\mathrm{O} 13-\mathrm{C} 13$	$1.235(5)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.407(5)$
$\mathrm{Cl} 2-\mathrm{Pl}-\mathrm{N} 1$	$171.2(1)$	$\mathrm{P}-\mathrm{O} 21-\mathrm{C} 21$	$125.0(2)$
$\mathrm{C} 12-\mathrm{Pl}-\mathrm{N} 2$	$90.0(1)$	$\mathrm{O} 11-\mathrm{C} 11-\mathrm{C} 12$	$122.0(4)$
$\mathrm{C} 12-\mathrm{Pl}-\mathrm{O} 21$	$93.5(1)$	$\mathrm{O} 13-\mathrm{C} 13-\mathrm{C} 12$	$120.7(4)$
$\mathrm{O} 21-\mathrm{P}-\mathrm{N} 1$	$92.7(1)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$117.1(3)$
$\mathrm{O} 21-\mathrm{Pl}-\mathrm{N} 2$	$173.3(1)$	$\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 22$	$125.4(3)$
$\mathrm{N} 1-\mathrm{Pl}-\mathrm{N} 2$	$83.2(1)$	$\mathrm{O} 23-\mathrm{C} 23-\mathrm{C} 22$	$123.8(4)$
$\mathrm{P}-\mathrm{C} 12-\mathrm{C} 11$	$104.5(2)$	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$123.2(4)$
$\mathrm{P}-\mathrm{C} 12-\mathrm{C} 13$	$107.1(2)$		
$\mathrm{P}-\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 22$	$-10.2(6)$		

Table 2. Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (1)

D—H \cdots A	D-H	H \cdots A	D.. A	$D-\mathrm{H} \cdots A$
N1-H1...O3 ${ }^{1}$	0.90	2.13	3.014 (5)	169
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 3^{11}$	0.90	2.25	3.042 (5)	147
$\mathrm{N} 2-\mathrm{H} 7 \cdots \mathrm{Ol1}{ }^{1 \prime \prime}$	0.90	2.10	2.940 (4)	154
$\mathrm{N} 2-\mathrm{H} 8 \cdots \mathrm{O} 23^{11}$	0.90	2.02	2.899 (4)	165
$\mathrm{O} 2-\mathrm{H} 26 \cdots \mathrm{Ol}$	0.81 (3)	1.99 (3)	2.800 (7)	176 (7)
$\mathrm{O} 3-\mathrm{H} 27 \cdots \mathrm{O} 2$	0.82 (3)	1.94 (3)	2.756 (6)	175 (5)
$\mathrm{O} 1-\mathrm{H} 23 \cdots \mathrm{O} 23$	0.81 (3)	2.29 (5)	2.996 (6)	145 (7)
O1-H24...O11	0.81 (3)	2.07 (3)	2.872 (5)	170 (8)
$\mathrm{O} 2-\mathrm{H} 25 \cdots \mathrm{O} 3^{\prime \prime}$	0.81 (3)	2.02 (3)	2.817 (5)	170 (7)
O3-H28...O13"	0.81 (3)	1.98 (3)	2.786 (5)	170 (6)

Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2},-z$; (ii) $1-x, 1-y,-z$; (iii) $1-x, 1-y, 1-z$; (iv) $x, y, 1+z ;$ (v) $x, y, z-1 ;$ (vi) $-x, 1-y,-z$.

Compound (2)

Crystal data

$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=505.48$
Orthorhombic
$P 2\left|{ }_{1}\right|_{1}$
$a=12.630$ (3) \AA
$b=14.938$ (3) \AA
$c=9.276(1) \AA$
$V=1750.0(5) \AA^{3}$
$Z=4$
$D_{x}=1.919 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.91 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in $\mathrm{CCl}_{4} / \mathrm{CHBr}_{3}$

Data collection

Rigaku AFC-7R diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.213, T_{\text {max }}=0.448$
5478 measured reflections
2884 independent reflections (plus 2220 Friedel-related reflections)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.068$

Mo $K \alpha$ radiation

$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=15.6-19.2^{\circ}$
$\mu=8.039 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Rhombic plate
$0.25 \times 0.10 \times 0.10 \mathrm{~mm}$ Yellow

4715 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=30^{\circ}$
$h=0 \rightarrow 17$
$k=0 \rightarrow 21$
$l=-13 \rightarrow 13$
3 standard reflections every 150 reflections intensity decay: 0.5%
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.66 \mathrm{e}^{-3}$.
$\Delta \rho_{\text {min }}=-0.84 \mathrm{e}^{-3}$
$S=1.021$
5104 reflections
208 parameters
H atoms: see below

$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0272 P)^{2}\right.$
\quad
$\quad+0.0057 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C) Absolute structure:
Flack (1983)
Flack parameter $=0.040(12)$

Table 3. Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$ for (2)

$\mathrm{P}-\mathrm{Nl}$	2.124 (5)	$\mathrm{C} 11-\mathrm{Cl2}$	1.487 (10)
$\mathrm{Pl}-\mathrm{N} 2$	2.019 (5)	$\mathrm{C} 12-\mathrm{Cl} 3$	1.467 (9)
$\mathrm{Pl}-\mathrm{C} 22$	2.108 (5)	O21-C21	1.290 (6)
$\mathrm{Pl}-\mathrm{O} 21$	2.058 (4)	O23-C23	1.243 (7)
O11-C11	1.222 (8)	C21-C22	1.375 (8)
O13-C13	1.220 (8)	C22-C23	1.436 (8)
$\mathrm{C} 12-\mathrm{Pl}-\mathrm{Nl}$	173.7 (2)	$\mathrm{Pt}-\mathrm{O} 21-\mathrm{C} 21$	120.5 (3)
$\mathrm{C} 12-\mathrm{Pr}-\mathrm{N} 2$	89.8 (2)	O11-C11-C12	122.5 (7)
$\mathrm{C} 22-\mathrm{Pt}-\mathrm{O} 21$	94.6 (2)	$\mathrm{Ol3-C13-C12}$	122.3 (7)
$\mathrm{O} 21-\mathrm{Pt}-\mathrm{Nl}$	91.5 (2)	$\mathrm{C11-C12-C13}$	115.1 (6)
$\mathrm{O} 21-\mathrm{Pt}-\mathrm{N} 2$	175.4 (2)	O21-C21-C22	124.2 (5)
$\mathrm{N} 1-\mathrm{Pt}-\mathrm{N} 2$	84.1 (2)	O23-C23-C22	123.1 (6)
$\mathrm{Pt}-\mathrm{Cl} 2-\mathrm{Cl} 3$	109.5 (4)	C21-C22-C23	123.2 (6)
$\mathrm{Pl}-\mathrm{Cl} 2-\mathrm{Cll}$	104.5 (4)		
$\mathrm{Pl}-\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 22$	-6.2 (8)		

Table 4. Hydrogen-bonding geometry ($\left(\AA^{\circ}{ }^{\circ}\right)$ for (2)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 5 \cdots \mathrm{O} 23^{1}$	0.90	2.16	$2.985(7)$	152
$\mathrm{~N} 2-\mathrm{H} 6 \cdots \mathrm{O} 23^{11}$	0.90	2.20	$3.046(7)$	157
Symmetry codes: (i) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (ii) $x, y, 1+z$.				

For both compounds, all H atoms other than those of water were included as riding and the positions of the water H atoms in (1) were refined with $\mathrm{O}-\mathrm{H}$ constrained to 0.82 (3) \AA; $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom). A disordered conformation was observed in (1) for the enolate chdo ${ }^{-}$and the site-occupancy factors of C25 and C251 were refined to 0.65 (2) and 0.35 (2), respectively. Each member of the Friedel pairs in (2) was treated as an independent observation in the least-squares refinement.

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1993b); program(s) used to solve structures: SHELXS97 (Sheldrick, 1990); program(s) used to refine structures: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors thank Mr Takahiro Kishi for his help in the preparative work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1013). Services for accessing these data are described at the back of the journal.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hollis, L. S., Amundsen, A. R. \& Stern, E. W. (1985). J. Am. Chem. Soc. 107, 274-276.

Ito, T., Kiriyama, T., Nakamura, Y. \& Yamamoto, A. (1976). Bull. Chem. Soc. Jpn, 49, 3257-3264.
Molecular Structure Corporation (1993a). MSC/AFC Diffractometer Control Softurare. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1993b). TEXSAN. Single Cŗstal Structure Analysis Software. Version 1.6. MSC. 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. T. C., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Crist. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Cnustal Structures. University of Göttingen, Germany.
Yuge, H. \& Miyamoto, T. K. (1996). Acta Cryst. C52, 3002-3005.
Yuge, H. \& Miyamoto, T. K. (1997). Acta Crist. C53, 1816-1819.

Acta Cryst. (1999). C55, 1620-1623

Sodium hydrogen trans-glutaconate and ammonium hydrogen trans-glutaconate

Jun-ichiro Taka \dagger and Setsuo Kashino

Department of Chemistry, Faculty of Science, Okayama
University, Tsushima, Okavama 700-8530, Japan. E-mail:
kashinos@cc.okayama-u.ac.jp
(Received 26 April 1999; accepted 22 June 1999)

Abstract

Sodium hydrogen trans-glutaconate (sodium hydrogen trans-pent-2-ene-1,5-dioate, $\mathrm{Na}^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{4}^{-}$), (I), crystallizes in the monoclinic space group $P 2_{1} / n$ with $Z=4$, and ammonium hydrogen trans-glutaconate (ammonium hydrogen trans-pent-2-ene-1,5-dioate, $\mathrm{NH}_{4}^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{4}^{-}$), (II), crystallizes in the orthorhombic space group lbam with $Z=8$. In both crystals, a non-centrosymmetric O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is formed between the carboxyl and carboxylate groups of neighboring anions. The Na^{+} cation in (I) is coordinated by six O atoms. There are two symmetry-independent NH_{4}^{+}cations in (II). The number of hydrogen bonds around each NH_{4}^{+}cation is four.

Comment

The crystal structures of the title compounds, sodium hydrogen trans-glutaconate, (I), and ammonium hydrogen trans-glutaconate, (II), have been determined as part of a detailed investigation of H -atom bonding behavior in short asymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in

[^0]
[^0]: \dagger Present address: Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.

